nmn supplement reviews
Double click for enlarge
Drag image to spin

Advanced NMN: Nicotinamide Mononucleotide

Availability: In stock

ORDER TODAY AND SAVE 50% OFF WHEN BUYING 10 BOTTLES (Sorry no recurring orders). 50 mg per serving - 30 servings - 60 Capsules - Made In The USA. Nicotinamide Mononucleotide Is Used by David Sinclair in his lab to study health*.

THE TECHNICAL REVIEW OF NMN AND NAD+ ARE SPLIT INTO TWO SECTIONS BELOW. CLICK TO GO TO SECTION ONE. RevGenetics has made NMN available; it is a dietary supplement and precursor to NAD+ which lab tests show activates SIRT and allows low energy cells (low ATP) to help restore the proper energy function in cells. 

NMN Is Certified Pure By Intertek, An Independent And Internationally Recognized ISO IEC 17025:2005 Accredited Research Laboratory 


Nicotinamide Mononucleotide Pure Caps

What does NMN do?

You can read a quick summary of our findings here (Nicotinamide Mononucleotide), or for a more detailed read on why NMN is a better NAD supplement, you can read this PDF here (Could NMN Truly reverse aging) to understand why we call this product Advanced NMN. The NMN Review regarding NAD+ is available in the two sections below the Intertek lab analysis image shown below.

Dr. David Sinclair takes NMN

Dr. David Sinclair and others have stated or have shown that NMN is a 1 Step NAD Precursor and does not require ATP to convert itself into NAD. Advanced NMN is believed to be absorbed within 30 minutes throughout the cells of the body, while most other B vitamins can take up to 8 hours with a low peak NAD+ and many are not absorbed well in cells other than those in the liver. In an interview, Dr. Sinclair says that he takes NMN and that he and his physician have seen remarkable benefits after three months.

At this time we feel NMN is better suited for older cells throughout the body (and not just the liver) that produce low amounts of ATP (cell energy) and may not be able to efficiently convert normal food vitamins into energy (NAD). For older cells with low ATP cells, NMN is a great choice to energize depleted ATP cells and help support youthful cellular function.

AdNicotinamide Mononucleotidevanced NMN is also available in bulk powder with a scoop. Bulk discount pricing as low as $97.50 to $195. You can order Advanced NMN water soluble bulk powder here: (NMN Pure Powder: nicotinamide mononucleotide)

If you have seen a decline in benefits over time with your current supplements, listen to this:

It may be that the cells ATP (energy) is low and may need to be restored. Try NMN today with your supplements, to see if the synergy boosts your energy and quality of life.

NMN is a dietary supplement and not a prescription drug. *These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.

Will this Nicotinamide Mononucleotide Supplement work on people?

There are no clinical studies on longevity using NMN. We cannot answer if it will work in people as it did in mice at this time. We simply make it available so that you can study and research the product for yourself.

The Nicotinamide Mononucleotide Supplement product is available?

We now have the product, and it is now shipping.

Thank you for purchasing the NMN product.

We believe it will be perfect for those that have seen a decline in benefits from various supplements over the course of 5-10 years. It may be that the low NAD which is caused by aging cells is causing any Sirtuin activation benefits to decline. Since NMN has been shown to restore NAD, we feel it is the perfect addition to your daily supplement intake.

Can't I just take NAD+ instead of NMN?

No, NAD is too large to pass through the cell membrane. NMN can easily pass into the cell membrane and then join other NMN to form NAD within the cells.

When will the Nicotinamide Mononucleotide Supplement product be available?

We are shipping now while supplies last.

What are the supplements you suggest to take with NMN?

We suggest taking micronized resveratrol and MetaCurcumin if possible. We have verified that both of these activate all 7 sirtuins in human immune cells. We believe NMN would only boost any benefits as NAD restoration and cell ATP is necessary for Sirtuins to function properly as you get older.

Could NMN truly reverse Aging?

We provide you our opinion in this copyrighted document regarding NMN. Please remember we cannot provide medical advice (Could NMN truly reverse Aging?)

Can I see the Nicotinamide Mononucleotide study?

The full study is copyrighted and we only link to the abstract below. You can view it on PubMed (Link) and you can directly order the full published study here (Link).

Study Abstract: SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. Mice overexpressing the mitotic checkpoint kinase gene BubR1 live longer, whereas mice hypomorphic for BubR1 (BubR1(H/H)) live shorter and show signs of accelerated aging. As wild-type mice age, BubR1 levels decline in many tissues, a process that is proposed to underlie normal aging and age-related diseases. Understanding why BubR1 declines with age and how to slow this process is therefore of considerable interest. The sirtuins (SIRT1-7) are a family of NAD(+)-dependent deacetylases that can delay age-related diseases. Here, we show that the loss of BubR1 levels with age is due to a decline in NAD(+) and the ability of SIRT2 to maintain lysine-668 of BubR1 in a deacetylated state, which is counteracted by the acetyltransferase CBP. Overexpression of SIRT2 or treatment of mice with the NAD(+) precursor nicotinamide mononucleotide (NMN) increases BubR1 abundance in vivo. Overexpression of SIRT2 in BubR1(H/H) animals increases median lifespan, with a greater effect in male mice. Together, these data indicate that further exploration of the potential of SIRT2 and NAD(+) to delay diseases of aging in mammals is warranted.

Can you provide a COA to know the ingredient you use for this is real NMN?

Yes we can

Click Below For The RevGenetics NMN Nicotinamide Mononucleotide Lab COA

Nicotinamide Mononucleotide COA


[Section One]

NMN, a forerunner to good health and long life

By Dr. H Valenzuela

It is hard to believe that such an important molecule as NAD (Nicotinamide Adenine Dinucleotide) was discovered 110 years ago. Although a Nobel Laureate first pointed out in 1930 how widespread and important this compound is to all living creatures, it is only recently that scientist discovered how a decrease in NAD production contributes to the aging process. An international group of scientist from the National Institute of Aging, Universities from Denmark, Norway and the United States have written a comprehensive review on NAD, summarizing how NAD is generated and consumed, how this contributes to aging and very importantly how supplementing our diet with NAD (and its precursors such as NMN) can slow the aging process (Trend in Molecular Medicine, 2017). To simplify the article for our readers, we highlight the review article in the form of questions about NAD and NMN. 

Why are NAD and its precursor, NMN, so important to living creatures?

The fact that all living organisms possess NAD is clearly important evidence that NAD is as fundamental to life as are DNA or proteins. But let's be specific, for starters, all chemical reactions that convert our food into energy require NAD. As if that was not enough NAD plays a role in the removal of old proteins and old organelles (in particular the mitochondria) to maintain properly functioning cells. NAD is also a critical molecule that can regulate DNA repair and cell death. More recently, scientist discovered that depletion of NAD and its precursors promotes the aging rate. This last observation has been demonstrated to hold true on living organism spanning from yeast to mice, and human clinical trials are ongoing but showing a lot of promise.  

Why take NMN supplements instead of NAD, given that NAD is the essential molecule used by all living creatures?

It is all about how our body absorbs these compounds. During digestion of foods or NAD supplements, NAD is converted to NMN before being absorbed by the epithelial cells in our gut. By consuming NMN, this step can be skipped, and absorption can occur faster without consuming or needing any additional energy or time going from NAD to NMN in the intestine. Once NMN is absorbed into our blood stream and then into ours cells, it is converted back to NAD and utilized by our cells to carry out their functions. An additional advantage of taking NMN over other precursors is that NMN is only a single step from becoming NAD. (For more details on the 3 pathways that make NAD and NMN, please reference review.)

How exactly does NMN extend our health and our life?

There are many successful approaches that extend lifespan which been investigated by researchers. These approaches collectively are referred as the Hallmarks of Aging Here we will review how NAD and its precursors have been shown to affect most of these hallmarks of aging pathways affecting lifespan.

  1. DNA repair. Studies have shown that maintaining keeping your DNA integrity intact will lead to longer life. NAD and its precursors have been shown to can increase DNA repair in cells. Cells that have been treated were less likely to have DNA damage when compared to cells that were not treated.
  1. Mitochondria. As we age our mitochondria, which is involved in producing the energy that makes our cells work gets damaged. NAD precursors have been shown to promote the creation of new mitochondria that can replace our old mitochondria, but it can also increase the removal of damaged mitochondria in our cells.
  1. Stem cells. NAD precursors help maintain stem cells youthfulness and ability to regenerate.
  1. Cell Senescence. NAD concentrations drop during senescence, and NAD supplementations help delay oxidative stress associated with metabolism and senescence.
  1. Nutrient sensing. NMN has been shown to increase the consumption of lipids, increasing energy expenditure and improve insulin sensitivity. These pathways are linked to sirtuins family members, SIRT-1 and SIRT-3 and their roles in regulating energy expenditure and insulin sensitivity. 
  1. Cellular communication. NMN has been shown to reverse age-associated expression of genes involved with inflammation. These pathways are again linked to sirtuins family members, SIRT-1 and SIRT-3, but this time with their role in regenerating neurite ganglia and delaying axon (nerve cells) degeneration. 

Besides delaying aging are there any other benefits to taking NMN?

In humans supplementation of NAD or its precursors (i.e., NMN) has been shown to decrease the pathology of Alzheimer’s disease in human neuron and restore mitochondria function in ATM disease; in the blood stream, triglycerides and glucose decrease; and finally, in the muscles, mitochondria’s function also increases giving individuals more vigor. In short, many age-related diseases can be fixed. In animals, these compounds have also been shown to improve hearing and eye damage caused by increasing age.

Why take NMN supplements when it is found in food?

Precursors to NAD and NAD can all be found in the food that we eat, such as, eggs, fish, meat, diary, whole grains and in some vegetables. The problem is that the amounts of these precursors are very low. For example, foods “rich” with NMN are broccoli, avocado, and beef. Of these examples, avocado has the highest concentrations of NMN at 1.6 mg/100 g. However, to eat the equivalent of one of our 25 mg NMN pills, a person would need to eat 3.44 lbs. of avocado! As much as we like avocados, this would be difficult to accomplish on a daily basis.


[Section Two]

Want more information? Great! Below is our previous technical overview on nicotinamide mononucleotide:

Nicotinamide Mononucleotide - Can NMN truly reverse Aging?

Download Copyrighted PDF of This Document

The available scientific literature has clearly described a decline in the level of Co-enzyme Nicotinamide Adenine Dinucleotide (NAD+) in both murine (mice) and human studies.  It is a direct function of the aging process as shown in multiple different studies.  As the level of NAD+ decreases the body starts to decline in numerous ways.

As an example, type II Diabetes (T2D) has the newest cases diagnosed between the ages of 45 to 64 as this decrease in NAD+ starts to manifest itself.  This lower production is revealed elsewhere, particularly in the form of increased oxidative stress, inflammation, poorer immune response, and lower lipid (fat) metabolism, which is why we tend to gain weight as we age.  Supplementation with Nicotinamide Mononucleotide (NMN) has been shown to ameliorate all of these age-related conditions, including providing impressive hepatic (liver) sensitivity improvement.

NAD+ has been shown to be essential for supporting bodily functions by enhancing sensitivity, improving energy metabolism, and improving stress resistance.  It also participates in genome protection through DNA repair, is neuroprotective, and is required for SIRTUIN activation.

SIRTUIN genes act as an anti-aging gene in yeast, and in murine studies one of the activators for the SIRTUIN SIT1 (signaling threshold regulating transmembrane adaptor 1) called resveratrol has been shown to activate mitochondrial biogenesis—and more mitochondria in the cells mean more available energy for the cell to function and conduct repairs.

In another murine study, age-related arterial dysfunction in older control (OC) mice versus young control (YC) mice showed that the OCs had impaired carotid artery function compared to YC at only 60% compared to 84%, respectively. Treating with NMN resulted in restoration to 86% in OC.  There was also improvement to the elasticity of the blood vessels (improved elastin), along with reduced stiffness (decreased collagen-1), lowered aortic pulse wave velocity, and decreased chemical markers (nitrotyrosine) for oxidative stress.  The OCs essentially became YCs in all but age.

In Dr. David Sinclair’s 2013 study he observed that “NMN was able to mitigate most age-related declines in mice,” and that “treatment of old mice with MNM reversed all of these biochemical aspects of aging.”  He concluded that “enhancing NAD+ biosynthesis by using NAD+ intermediates, such as NMN and NR (Nicotinamide Riboside), is expected to ameliorate age-associated physiological decline”.

This has precipitated dozens of studies since that are focused on investigating NMN supplementation to treat cardiovascular disease, diabetes, obesity, life extension, cancer, Alzheimer’s disease, Parkinson’s disease, and many more.

Regarding function, NAD+ operates in a way akin to resveratrol and other polyphenols but is considerably more effective (on the order of ~100 times).  It can act on (disable/detach/destroy) the proteins which inappropriately connect themselves to the histone proteins that form the latticework upon which the DNA winds itself.  This appears to be a large factor in the aging process and supplants antedated prior theories about mutations being the cause.

Imagine, if you will, a strand of DNA, appropriately folded and functioning perfectly.  Suddenly gene modifying proteins start to spawn because there is insufficient NAD+ to scavenge the oxidative radicals.

To understand this, think of these nasty proteins as “on” switches.  They latch onto the DNA molecule’s receptors; fortunately, most of them attach to DNA that has no specific function—what we call the “junk DNA”—but periodically they will attach to something important.

At this point, it overrides the internal instructions and turns on inappropriate functions.  All DNA is coded to create all of the cells in the body upon need, but how useful would it be if a brain cell suddenly had instructions turned on that told it that it was now a liver cell?

NAD+ can detach these invasive and detrimental gene modifiers, allowing the over-active gene to return to its normal quiescent state, only turning back on when truly required.  In proper concentrations, as in our youth, it can destroy these proteins before they can do any damage at all.  If the gene modifiers have already invaded, research shows that it can stop the effect being expressed in and on the DNA.  Better yet, it appears to arrest the progress of the disease state, allowing DNA to reverse itself to a normally healthy condition.

That being said, NAD+ is far too big a molecule to be able to penetrate a cell wall.  It can neither access the DNA nor enhance the effect of the mitochondria (by making energy more available) in its final form.  While these are primary functions for NAD+, NAD+ genesis needs to take place within cells.

Taking NAD+ as a supplement will do absolutely nothing for your health.  It will pass through or be digested, resulting in slightly more expensive urine, but very little else.  However, the much smaller precursor molecules (such as NMN and NR), can easily penetrate the micro-pores for chemical exchange in cell walls.  So, as long as the mechanism for making NAD+ is intact inside the cells, the body can make all the NAD+ it requires.

This occurs primarily through two distinct metabolic pathways in our bodies, including either the Tryptophan or the Nicotinic Acid (the B-vitamin Niacin) derived de novo pathways, and/or the nicotinamide, nicotinic acid, and/or nucleoside salvage pathways, incorporating both nicotinamide riboside and nicotinic acid riboside.

The first one, the De Novo pathway, gets its name from the Latin meaning “from scratch” or “from the beginning”.  Nucleotides are derived from constituent precursors such as tryptophan, which we’ve mentioned previously.  It is responsible for about 15% of our NAD+ production throughout our lives.

Nicotinamide Mononucleotide De Novo NMN pathway

The second path is called the Salvage pathway.  It quite literally salvages nucleosides and bases whenever DNA and RNA are broken down; it also makes up a part of the body’s ongoing energy generation process.Nicotinamide Mononucleotide Salvage Pathway NMN NAD

The Salvage pathway is responsible for the remaining 85% of our NAD+ requirements.  There is a problem with this pathway, however, because of a rate-limiting enzyme named Nicotinamide phosphoribosyltransferase, aka NAmPRTase or Nampt.

Nampt is like an over-ambitious traffic cop, working a multi-lane four-way intersection with broken traffic lights, which only allows one car to pass at a time, and the next one can’t start moving until the first one completely clears the intersection.  It slows down everyone, creating more problems than it solves.

Once NAD+ is “used” it becomes NAM (Nicotinamide), but because of the Nampt restriction, it requires a full 8 hours to return to peak NAD+ levels.  Like NAM, Nicotinamide Riboside (NR) is processed through the Salvage pathway, and takes just as long, 8 hours, to reach peak levels.

In contrast, NMN completely bypasses the Nampt bottleneck and can reach peak levels in just 30 minutes.  Clearly, this is a significant advantage particularly as we age and our ability to produce NAD+ diminishes.

Consider that between ages 0-10 we produce up to 300% more NAD+ than we need since our bodies are growing quickly.  As we approach age 45, the production has decreased to about 100% of our needs.  Beyond that, and for the rest of our lives, the NAD+ production drops below our bodies’ NAD+ Requirment for Nicotinamide Mononucleotide NMNrequirements after which deterioration sets in and our systems begin to fail. Until we die, we are always short by about 20% of our actual needs after age 50.

By providing adequate precursors to the NAD+ formation, we can bypass the restricted or compromised Scavenger pathways and instead take advantage of the underutilized De Novo pathway.  Even if that doesn't result in life extension (though it should), a normal lifespan will likely be much more enjoyable and free of the debilitating disease usually associated with age.  But without NAD+ and AMP (Adenosine Mono-Phosphate) in sufficient quantity, all of this rebuilding and maintenance comes to a grinding halt, and we age.

In the liver, the preferred substrate for NAD+ building has always been tryptophan which provides the highest concentrations of this essential co-enzyme.  It is important to note that NAD+ is the key to communicating between the cell nucleus, ultimately driving cell activity, and the mitochondria which provide the energy required by the cell.

What Works

It is interesting to note that some things work better than others, which only makes sense.Nicotinamide Mononucleotide NAD+ NMN presence

  • NAM is plentiful, and can enter cells with relative ease, but is dependent on Nampt for conversion into a useful NAD+ molecule
  • NR taken orally is largely ineffective. It is digested and becomes NAM, thereby limiting its efficacy.  Introduced directly into the bloodstream it bypasses the Nampt restricting enzyme, but unless using an I.V. drip, you would need to be constantly injecting nicotinamide to make it effective
  • NMN taken orally quickly elevates the NMN levels in the bloodstream and maintains the elevated levels much longer than NAM, NA, or NR.

In this chart, you can see that the oral dose was effective in as little as 10 minutes in the liver.  After 30 minutes had elapsed, not only had it more than doubled the amount available in the liver, but it had manifested itself in a major muscle (soleus) at the back of the leg, vital for standing, walking, or running, ready to supply more energy.

This demonstrates that the NMN makes it through the digestive system, the liver, and then the bloodstream intact so that it can be metabolized in muscle tissue in just 30 minutes.  The de novo pathway is more than capable of handling our NAD+ needs, bypassing the Nampt restrictions in the salvage pathways, as long as the precursors are available.

Making the Point

A murine study demonstrates that NMN quickly disseminates from the gut to the bloodstream in just 2-3 minutes, and is taken up (cleared from the blood) into tissues in just 15 minutes.  The salvage mechanism simply cannot match this efficiency.

That same study further revealed that long-term dietary supplementation of one group of identical mice, divided into two groups, Controls (C) on an Cont Vs NMN Nicotinamide Mononucleotideordinary diet, and subjects (S) who received Nicotinamide (NMN), showed steady aging and anti-aging, respectively.  Controls gained weight whereas Subjects lost fat and gained lean muscle mass; C’s energy metabolism decreased, S’s metabolism increased, as shown in the accompanying chart.

NAD+ and the SIRT1 gene were found in considerably higher concentrations than in young mice.  This also resulted in higher energy and activity levels and improved health with no detectable deleterious side effects or toxicity using both blood chemistry panels and urinalysis.  Notably, there was no difference in overall lifespan, but health was better throughout the studies.

Mice on an NMN-enhanced diet experienced a switch in energy metabolism from glucose to fatty acids.  Regular energy requirements are met with less metabolic strain using fats as the source.  This avoids all the peaks and valleys in blood sugar levels, restoring a more conventional metabolism that animals experience, and which was our human heritage before we discovered how to make sugar.

Modern nutrition is slowly coming to the realization that up to 75% of our energy requirements should come from dietary fats, 20% from proteins, and only 5% from carbohydrates—but not any carbs sought out deliberately—just incidental ones from eating a quantity of healthy greens for their vitamin content.

Carbohydrates spike sugar levels and contribute to resistance which, going back to the point made at the beginning is the chief cause of T2D whenFat Metab and NMN nicotinamide mononucleotide our systems start to fail around age 45, and we can no longer control our blood sugar levels.  Fully half of the U.S. population has T2D or pre-diabetes, and most of them don’t know it because they are still healthy enough to cope with the stress.

The reasoning is simple.  Our bodies require essential fats and require essential proteins that we cannot manufacture, but there is no nutritional requirement for carbohydrate in our diet.  Our bodies are capable of making any carbohydrates that we require, so there is no “essential” component anywhere in the carbohydrate spectrum.

Sarah Hallberg, Ph.D., an Obesity Doctor, gave a TED Talk on this very subject, and it is quite worthwhile to review at your convenience.

Nevertheless, as a consequence of fat metabolism, the mice use more oxygen because they are more physically fit, healthy, and active.  After 12 months on the regimen, the NMN subjects were exhibiting energy levels, and food & water consumption levels, similar to mice that were six months younger.

Human Studies

Mice can’t have all the fun, of course, so human studies (NMN human trials conducted in Tokyo’s Keio University School of Medicine and the Washington University School of Medicine) are currently in progress (concluding June 1st, 2020) to determine change in sensitivity, and to determine change in beta-cell function over the course of two years with NMN supplementation.

Researchers also expect to gather results on control of blood sugar, dilation of blood vessels, changes in both blood lipid and body fat levels, and changes in the markers for cardiovascular disease.

Yes, Nicotinamide Mononucleotide Is Non-toxic

Nicotinamide Mononucleotide Food Sources:

NMN is available in vegetables, mushrooms, meat, and shrimp but trying to obtain sufficient through diet alone would be problematic.  Studies dosages have been 50mg to 250mg.  The FDA suggests that a 150 pound (68kg) human would require about 560mg per day.  The difficulty is that you would have to eat about 100 pounds of edamame, 1,800 pounds of broccoli, or similarly impossible amounts of cucumber, cabbage, avocado, tomato, mushrooms, raw beef, or shrimp.

Raised Eyebrows

The ongoing theme of this research has been surprising.  Quotations (unattributed) are constantly spawning from researchers, indicating that the promising (and sometimes astonishing) results are not diminishing.  Here are some examples:

  • “NMN supplementation mimics exercise.”
  • “NMN restored the mitochondrial homeostasis and key biochemical markers of muscle health in a 22-month-old mouse to levels similar to a 6-month-old mouse.”
  • “NMN-supplementation can induce reversal of glucose intolerance.”
  • “…the cells of old mice were indistinguishable from young mice after just one week of treatment.”
  • “Surprisingly, just one dose of NMN normalized impaired glucose tolerance.”
  • “raising NAD+ levels in old mice restores mitochondrial function to that of a young mouse.”
  • “Remarkably, NMN administered to FXN-KO mice[1] restores cardiac function to near-normal levels.”
  • “NMN treatment reduces brain cell death and oxidative stress. These results further support the neuroprotection of NMN/NAD+.”
  • “NMN significantly increased the level of NAD+ in the heart.  NMN protected the heart from I/R injury[2]
  • “Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice.”
  • “NMN treatment reduces brain cell death and oxidative stress.”
  • “NMN could restore cognition in Alzheimer’s Disease (AD) model rats".  The beneficial effect of NMN is produced by ameliorating neuron survival, improving energy metabolism and reducing ROS accumulation.  These results suggest that NMN may become a promising therapeutic drug for AD”

The Takeaway On Nicotinamide Mononucleotide

NAD+ levels diminish as we age.  This exacerbates a decline in our health, but ongoing studies indicate that this can be ameliorated through NMN supplementation to the levels of a much younger individual.

The health benefits under investigation strongly suggest that there are significant benefits to be derived from NMN supplementation which, even if they do not extend life expectancy, should result in improved quality of life with fewer infirmities and disease processes.

You may still only live to age 80, but you’ll have stronger bones, more energy, better eyesight, a clear brain and vivid thought processes.  There will be no need to sit in a rocking chair waiting for a relative to visit.

If life is extended, then you can remain active and healthy.  If not, instead of spending the last two decades being sick, you can continue normally until you reach the end of the trail, still in good health, or at worst, only infirm for a short period at the end, rather than decades.

Final Words On NAD+ And Nicotinamide Mononucleotide

All of the precursors for manufacturing NAD+ are effective at raising NAD+ levels in the liver, but this does not distribute uniformly throughout the body, especially to those organs or tissues without direct access to the bloodstream.

Nicotinamide Mononucleotide For Sale

Of all the precursors for NAD+, only NMN is both stable and available to cells through the bloodstream and does not need to deal with the Nampt enzyme that restricts NAD+ formation. We make it available at RevGenetics as one of our top recommendations at this time.

This research is very promising, and of benefit to us all.  Keep an eye on developments, because it will eventually affect you, no matter what your age. 

[1] Frataxin deficient Knock-In/Knock-Out (KIKO) mice specimens with cardiac deficiency

[2] ischemia/reperfusion (I/R) injuries include myocardial infarction, stroke, and peripheral vascular disease.



Customer Questions

Ask Question
Q: Is Nicotinamide Mononucleotide the same as Niacin or B3?

A: No, Nicotinamide Mononucleotide is not the same molecule. It is a nucleotide that is derived from B3 (also called Niacin). Unlike Niacin, NMN has shown to activate all 7 Sirtuins and is small enough (according to Dr Sinclair) to pass through the cell membrane and then join with other NMN nucleotides to form NAD+ within the cells.

Q: Is Nicotinamide Mononucleotide a Neuroprotector?

A: According to the University of Miami Miller School of Medicine, NMNAT NAD Study it may be the case due to its function in cells.

Q: How fast does Nicotinamide Mononucleotide take to turn into NAD+?

A: According to the Washington University School of Medicine and associates Long-Term Administration of Nicotinamide Mononucleotide Study, NMN takes 30 minutes to make its way through the liver, into muscle, and is metabolized to NAD+. NMN appears to be much faster than NAM (Niacinamide) and NR (Nicotinmide Riboside) which takes about 8 hours to reach peak NAD+ according to the study.

Q: Can't I take NAD+ directly instead of Nicotinamide Mononucleotide to increase my NAD levels in cells?

A: Many cells can not use NAD+ straight from the blood as NAD+ could not readily go or pass through the cellular membrane layer. Muscle mass tissue, as an example, depends upon cells inner recycling of NAD+ via the salvage path which is controlled by Nampt. To restore your depleted NAD+ levels in such cells, the material that makes NAD must: 1- Be offered in the blood stream. 2- When inside a cell, have the ability to bypass the Nampt traffic jam. NAM: NAM is plentiful in the blood and also conveniently carried into such cells throughout the body, yet depends on Nampt, which is the rate-limiting enzyme in the salvage path. So this isn't efficient. NA and also Tryptophan: NA and also Tryptophan act with the Afresh path, which provides a small portion of our NAD+, mostly in the liver. So If the liver is all you care about, this may be ok. NR: When taken by mouth as a supplement, most NR doesn't get through your gastrointestinal system undamaged since it is broken down to NAM. NR can bypass the Nampt traffic jam however is not normally offered in the bloodstream, and as a dietary supplement, it cannot be injected to bypass the gastrointestinal tract undamaged. After NMN supplementation, levels of NMN in the bloodstream are promptly raised and stay high longer compared to NAM, NA, or NR.


Nicotinamide Mononucleotide NAD+ And Other Study References:

  1. Detection and pharmacological modulation of nicotinamide mononucleotide (NMN) in vitro and in vivo - (Formentini, 2009)
  2. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity - (Cato, 2009)
  3. A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis - (Imai, 2010)
  4. NAD blocks high glucose induced mesangial hypertrophy via activation of the sirtuins-AMPK-mTOR pathway - (Zhuo, 2011)
  5. Nicotinamide Mononucleotide, a Key NAD+ Intermediate, Treats the Pathophysiology of Diet- and Age-Induced Diabetes in Mice - (Yoshino, 2011)
  6. The NAD (+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity - (Canto, 2012 )
  7. NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. - (Zhang, 2016)
  8. Declining NAD+ Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging - (Gomes, Sinclair,2013)
  9. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and repercussion - (Yamamoto, 2014)
  10. NAD+ and sirtuins in aging and disease - (Imai, 2014)
  11. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3 - (Khan, 2014)
  12. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model - (Long, 2015)
  13. NAD+ metabolism and the control of energy homeostasis – a balancing act between mitochondria and the nucleus - (Canto, 2015)
  14. NAD+ metabolism: Bioenergetics, signaling and manipulation for therapy  - (Yang, 2016)
  15. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair - (Fang, 2016)
  16. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans - (Trammell, 2016)
  17. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice - (Trammell, 2016)
  18. β-Nicotinamide Mononucleotide, an Anti-Aging Candidate Compound, Is Retained in the Body for Longer than Nicotinamide in Rats - (Kawamura, 2016)
  19. The first human clinical study for NMN has started in Japan - (Tsubota, 2016)
  20. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death - (Wang, 2016)
  21. Head to Head Comparison of Short-Term Treatment with the NAD(+) Precursor Nicotinamide Mononucleotide (NMN) and 6 Weeks of Exercise in Obese Female Mice - (Uddin, 2016)
  22. Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice - (Mills, 2016)
  23. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice - (de Picciotto, 2016)
  24. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease - (Yao, 2017)
  25. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model - (Martin, 2017)
  26. Nicotinamide Mononucleotide, an NAD+ Precursor, Rescues Age-Associated Susceptibility to AKI in a Sirtuin 1-Dependent Manner - (Guan, 2017)
  27. Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway - (Wei, 2017)
  28. Short-term administration of Nicotinamide Mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure - (Zhang, 2017)
  29. Modulating NAD+ metabolism, from bench to bedside - (Auwerx, 2017)
  30. Aspects of Tryptophan and Nicotinamide Adenine Dinucleotide in Immunity: A New Twist in an Old Tale. - (Rodriguez, 2017)
  31. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice - (Williams, 2017)
  32. NAMPT-mediated NAD biosynthesis as the internal timing mechanism: In NAD+ World, time is running in its own way - (Poljsak, 2017)
  33. Effect of “Nicotinamide Mononucleotide” (NMN) on Cardiometabolic Function (NMN) - (Clinical In Process)
  34. The dynamic regulation of NAD metabolism in mitochondria - (Stein, 2012)
  35. Novel NAD+ metabolomic technologies and their applications to Nicotinamide Riboside interventions - (Trammel, 2016)
  36. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans - (Meydayni, 2016)
  37. A high-fat, ketogenic diet induces a unique metabolic state in mice.  - (Kennedy, 2007)
  38. Ketone body metabolism and cardiovascular disease. - (Cotter, 2013)
  39. Ketone bodies as signaling metabolites - (Newman, 2014)
  40. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease - (Youm, 2015)
  41. The effect of the Spanish Ketogenic Mediterranean Diet on nonalcoholic fatty liver disease: a pilot study. - (Guisado, 2011)
  42. β-Hydroxybutyrate: A Signaling Metabolite in starvation response - (Morales, 2016)
  43. Physiological roles of ketone bodies as substrates and signals in mammalian tissues - (Robinson, 1980)
  44. Ketone bodies mimic the life span extending properties of caloric restriction  - (Veech, 2017)
  45. Novel ketone diet enhances physical and cognitive performance - (Murray, 2016)
  46. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. - (Study)
  47. Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes - (Cox, 2013)
  48. Neuroendocrine Factors in the Regulation of Inflammation: Excessive Adiposity and Calorie Restriction - (Fontana, 2009)
  49. Beta-adrenergic receptors are critical for weight loss but not for other metabolic adaptations to the consumption of a ketogenic diet in male mice - (August, 2017)
  50. A randomized trial of a low-carbohydrate diet for obesity - (Foster, 2003)
  51. β-Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation - (Bae, 2016)
  52. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies.  - (Maalouf, 2009)
  53. AMPK activation protects cells from oxidative stress‐induced senescence via autophagic flux restoration and intracellular NAD + elevation  - (Han, 2016)
  54. Regulation of AMP-activated protein kinase by natural and synthetic activators - (Hardie, 2015)
  55. Effects of Exhaustive Aerobic Exercise on Tryptophan-Kynurenine Metabolism in Trained Athletes  - (Strasser, 2016)
  56. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation - (Bai, 2011)
  57. Carbohydrate restriction regulates the adaptive response to fasting - (Klein, 1992)
  58. Interventions to Slow Aging in Humans: Are We Ready? - (longo, 2015)
  59. Extending healthy life span–from yeast to humans - (longo, 2010)
  60. Dietary restriction with and without caloric restriction for healthy aging - (Lee, 2016)
  61. A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan - (Longo, 2015)
  62. Diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms - (Longo, 2016)
  63. Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle - (Porter, 2015)
  64. Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice  - (Newman, 2017)
  65. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling - (Mouchiroud, 2013)
  66. NAMPT- mediated NAD(+) biosynthesis is essential for vision in mice - (Lin, 2016)
  67. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair - (Fang, 2016)
  68. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease - (Gariani, 2017 )
  69. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle - (Canto, 2010)
  70. The NAD (+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity - (Canto, 2012)
  71. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans - (Trammell, 2016)
  72. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice - (Trammell, 2016)
  73. Dietary leucine stimulates SIRT1 signaling through activation of AMPK - (Hongliang, 2012)
  74. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3 - (Khan, 2014)
  75. NAD blocks high glucose induced mesangial hypertrophy via activation of the sirtuins-AMPK-mTOR pathway - (Zhuo, 2011)
  76. The effect of different exercise regimens on mitochondrial biogenesis and performance - (Philander, 2014)
  77. Dietary proanthocyanidins boost hepatic NAD+ metabolism and SIRT1 expression and activity in a dose-dependent manner in healthy rats - (Aragon’s, 2016)
  78. NAD+ Deficits in Age-Related Diseases and Cancer - (Garrido, 2017)
  79. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation - (Ong, 2013)
  80. Chlorogenic Acid Improves Late Diabetes through Adiponectin Receptor Signaling Pathways in db/db Mice - (Chang, 2015)
  81. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds - (Marin-Aguilar, 2017)
  82. The Effects of Ramadan Fasting on Body Composition, Blood Pressure, Glucose Metabolism, and Markers of Inflammation in NAFLD Patients: An Observational Trial - (Mazidi, 2014)
  83. Comparative effects of carbohydrate versus fat restriction on metabolic profiles, biomarkers of inflammation and oxidative stress in overweight patients with Type 2 diabetic and coronary heart disease: A randomized clinical trial. - (Raygan, 2016)
  84. Normal fasting plasma glucose and risk of type 2 diabetes diagnosis - (Nichols, 2008)
  85. Are We All Pre-Diabetic? - (Stokel,2016)
  86. Hepatic NAD+ deficiency as a therapeutic target for non-alcoholic fatty liver disease in aging - (Zhou, 2016)
  87. Effect of exercise intensity on post-exercise oxygen consumption and heart rate recovery - (Mann,2014)
  88. A 45-minute vigorous exercise bout increases metabolic rate for 14 hours - (Knab,2011)
  89. Effects of high-intensity resistance training on untrained older men. II. Muscle fiber characteristics and nuclei-cytoplasmic relationships - (Gerontol, 2000)
  90. Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice - (Newman, 2017)
  91. A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice - (Roberts, 2017)
  92. NK cells link obesity-induced adipose stress to inflammation and insulin resistance - (Wensveen, 2015)
  93. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation - (Wensveen, 2015)
  94. The impact of the Standard American Diet in rats: Effects on behavior, physiology and recovery from inflammatory injury - (Totsch, 2017)
  95. Bioenergetic state regulates innate inflammatory responses through the transcriptional co-repressor CtBP - (Shen, 2017)
  96. The Ketogenic Diet as a Treatment Paradigm for Diverse Neurological Disorders - (Stafstrom, 2012)
  97. Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle - (Fredrick 2016)
  98. Digestion and absorption of NAD by the small intestine of the rat - (Henderson, 1983)
  99. Effects of a wide range of dietary nicotinamide riboside (NR) concentrations on metabolic flexibility and white adipose tissue (WAT) of mice fed a mildly obesogenic diet - (Shi, 2017)
  100. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans  - (Brenner, 2004)
  101. Nampt Expression Decreases Age-Related Senescence in Rat Bone Marrow Mesenchymal Stem Cells by Targeting Sirt1 - (Ma, 2017)

Customer Reviews

Based on 2 reviews Write a review

More from this collection

(0) Items
Items 0
Subtotal $0.00
To Top