Simply NR: Pure Nicotinamide Riboside Powder - 10 Grams
Double click for enlarge
SKU: NR-10 Grams

Simply NR: Pure Nicotinamide Riboside Powder - 10 Grams

Availability: In stock

LIMITED QUANTITY PRESALE (Sorry no recurring orders).10 Grams - Each scoop serving contains approximately 250mg NR and each container has 40 SERVINGS. RevGenetics has made this available as a research material. NR is slowly used by the body over 8 hours, while NMN is considered to be absorbed within 30 minutes. NR is best when combined with NMN and Resveratrol. We are making NR available for a limited time at a price per gram that beats all NR products on Amazon (we checked 02/27/2018*), sorry no additional discounts at this time for limited products.

This powder product is not covered by our 30-day guarantee. Product container may be different than image shown. Preorder: Order Today For Delivery In 7-14 Days.


What is NR and do other companies have it?
NR is used by many companies and has different trademarked and branded names. For example, Thorne Research's registered trademark name for NR product is Niacel® and uses Nicotinamide Riboside Chloride that is branded as Niagen@ in their products. Niagen@ is a registered trademark of ChromaDex, Inc. RevGenetics has no relationship with these two companies or their trademarks. Our RevGenetics trademark name for NR is SimplyNR™. All trademarks, service marks, trade names, trade dress, product names and logos appearing on the site are the property of their respective owners.

Other related products:

Nicotinamide Mononucleotide powderAdvanced NMN is also available in capsules with a 30 Day Money Back Guarantee. Bulk discount pricing as low as $18.98 to $37.95. You can order Advanced NMN Capsules here: (Nicotinamide Mononucleotide Capsules)


Nicotinamide Mononucleotide powderAdvanced NMN is also available in 25 Grams of water-soluble bulk powder with a scoop. Bulk discount pricing as low as $197.50 to $395. You can order Advanced NMN water soluble bulk powder here: (NMN Pure Powder: nicotinamide mononucleotide)



How do you use this powder? We admit the powder scooped can vary widely when you use the tiny 1/8 teaspoon scoop we include. We have used the scoop many times, and find that approximately 250mg is possible when scooping up a level non-packed scoop of powder. However, if the scoop isn't level, you can have the scoop provide as much as 340mg easily, so we suggest scooping up some powder and then using a paper card to slide back the excess powder that is not level with the scoop back in the container. An easier method to take this powder is to dissolve it: The best method we have found for this powder is to simply dissolve all of the 10 grams of powder in a large water bottle, and then divide the liquid into 40 equal parts of water. You can then use 1 part daily for 40 days for your personal research. We use a small shot glass that we have measured out for this purpose. The NR is completely water soluble and easily disbursed properly in the liquid. We feel this is the easiest method to use this powder product. 

When will the Nicotinamide Riboside Supplement powder be available? We now have the product, and it will start shipping after the first week of March. 

Why is the product limited? We are temporarily making the NR available as a trial in powder, to see if this is something that our customers want. If our customers show a desire for this product we will see if we can source this material further in a low cost manner to maintain this price.


Customer Questions

Ask Question

Nicotinamide Mononucleotide NAD+ And Other Study References:

  1. Detection and pharmacological modulation of nicotinamide mononucleotide (NMN) in vitro and in vivo - (Formentini, 2009)
  2. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity - (Cato, 2009)
  3. A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis - (Imai, 2010)
  4. NAD blocks high glucose induced mesangial hypertrophy via activation of the sirtuins-AMPK-mTOR pathway - (Zhuo, 2011)
  5. Nicotinamide Mononucleotide, a Key NAD+ Intermediate, Treats the Pathophysiology of Diet- and Age-Induced Diabetes in Mice - (Yoshino, 2011)
  6. The NAD (+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity - (Canto, 2012 )
  7. NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. - (Zhang, 2016)
  8. Declining NAD+ Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging - (Gomes, Sinclair,2013)
  9. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and repercussion - (Yamamoto, 2014)
  10. NAD+ and sirtuins in aging and disease - (Imai, 2014)
  11. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3 - (Khan, 2014)
  12. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model - (Long, 2015)
  13. NAD+ metabolism and the control of energy homeostasis – a balancing act between mitochondria and the nucleus - (Canto, 2015)
  14. NAD+ metabolism: Bioenergetics, signaling and manipulation for therapy  - (Yang, 2016)
  15. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair - (Fang, 2016)
  16. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans - (Trammell, 2016)
  17. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice - (Trammell, 2016)
  18. β-Nicotinamide Mononucleotide, an Anti-Aging Candidate Compound, Is Retained in the Body for Longer than Nicotinamide in Rats - (Kawamura, 2016)
  19. The first human clinical study for NMN has started in Japan - (Tsubota, 2016)
  20. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death - (Wang, 2016)
  21. Head to Head Comparison of Short-Term Treatment with the NAD(+) Precursor Nicotinamide Mononucleotide (NMN) and 6 Weeks of Exercise in Obese Female Mice - (Uddin, 2016)
  22. Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice - (Mills, 2016)
  23. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice - (de Picciotto, 2016)
  24. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease - (Yao, 2017)
  25. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model - (Martin, 2017)
  26. Nicotinamide Mononucleotide, an NAD+ Precursor, Rescues Age-Associated Susceptibility to AKI in a Sirtuin 1-Dependent Manner - (Guan, 2017)
  27. Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway - (Wei, 2017)
  28. Short-term administration of Nicotinamide Mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure - (Zhang, 2017)
  29. Modulating NAD+ metabolism, from bench to bedside - (Auwerx, 2017)
  30. Aspects of Tryptophan and Nicotinamide Adenine Dinucleotide in Immunity: A New Twist in an Old Tale. - (Rodriguez, 2017)
  31. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice - (Williams, 2017)
  32. NAMPT-mediated NAD biosynthesis as the internal timing mechanism: In NAD+ World, time is running in its own way - (Poljsak, 2017)
  33. Effect of “Nicotinamide Mononucleotide” (NMN) on Cardiometabolic Function (NMN) - (Clinical In Process)
  34. The dynamic regulation of NAD metabolism in mitochondria - (Stein, 2012)
  35. Novel NAD+ metabolomic technologies and their applications to Nicotinamide Riboside interventions - (Trammel, 2016)
  36. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans - (Meydayni, 2016)
  37. A high-fat, ketogenic diet induces a unique metabolic state in mice.  - (Kennedy, 2007)
  38. Ketone body metabolism and cardiovascular disease. - (Cotter, 2013)
  39. Ketone bodies as signaling metabolites - (Newman, 2014)
  40. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease - (Youm, 2015)
  41. The effect of the Spanish Ketogenic Mediterranean Diet on nonalcoholic fatty liver disease: a pilot study. - (Guisado, 2011)
  42. β-Hydroxybutyrate: A Signaling Metabolite in starvation response - (Morales, 2016)
  43. Physiological roles of ketone bodies as substrates and signals in mammalian tissues - (Robinson, 1980)
  44. Ketone bodies mimic the life span extending properties of caloric restriction  - (Veech, 2017)
  45. Novel ketone diet enhances physical and cognitive performance - (Murray, 2016)
  46. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. - (Study)
  47. Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes - (Cox, 2013)
  48. Neuroendocrine Factors in the Regulation of Inflammation: Excessive Adiposity and Calorie Restriction - (Fontana, 2009)
  49. Beta-adrenergic receptors are critical for weight loss but not for other metabolic adaptations to the consumption of a ketogenic diet in male mice - (August, 2017)
  50. A randomized trial of a low-carbohydrate diet for obesity - (Foster, 2003)
  51. β-Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation - (Bae, 2016)
  52. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies.  - (Maalouf, 2009)
  53. AMPK activation protects cells from oxidative stress‐induced senescence via autophagic flux restoration and intracellular NAD + elevation  - (Han, 2016)
  54. Regulation of AMP-activated protein kinase by natural and synthetic activators - (Hardie, 2015)
  55. Effects of Exhaustive Aerobic Exercise on Tryptophan-Kynurenine Metabolism in Trained Athletes  - (Strasser, 2016)
  56. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation - (Bai, 2011)
  57. Carbohydrate restriction regulates the adaptive response to fasting - (Klein, 1992)
  58. Interventions to Slow Aging in Humans: Are We Ready? - (longo, 2015)
  59. Extending healthy life span–from yeast to humans - (longo, 2010)
  60. Dietary restriction with and without caloric restriction for healthy aging - (Lee, 2016)
  61. A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan - (Longo, 2015)
  62. Diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms - (Longo, 2016)
  63. Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle - (Porter, 2015)
  64. Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice  - (Newman, 2017)
  65. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling - (Mouchiroud, 2013)
  66. NAMPT- mediated NAD(+) biosynthesis is essential for vision in mice - (Lin, 2016)
  67. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair - (Fang, 2016)
  68. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease - (Gariani, 2017 )
  69. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle - (Canto, 2010)
  70. The NAD (+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity - (Canto, 2012)
  71. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans - (Trammell, 2016)
  72. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice - (Trammell, 2016)
  73. Dietary leucine stimulates SIRT1 signaling through activation of AMPK - (Hongliang, 2012)
  74. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3 - (Khan, 2014)
  75. NAD blocks high glucose induced mesangial hypertrophy via activation of the sirtuins-AMPK-mTOR pathway - (Zhuo, 2011)
  76. The effect of different exercise regimens on mitochondrial biogenesis and performance - (Philander, 2014)
  77. Dietary proanthocyanidins boost hepatic NAD+ metabolism and SIRT1 expression and activity in a dose-dependent manner in healthy rats - (Aragon’s, 2016)
  78. NAD+ Deficits in Age-Related Diseases and Cancer - (Garrido, 2017)
  79. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation - (Ong, 2013)
  80. Chlorogenic Acid Improves Late Diabetes through Adiponectin Receptor Signaling Pathways in db/db Mice - (Chang, 2015)
  81. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds - (Marin-Aguilar, 2017)
  82. The Effects of Ramadan Fasting on Body Composition, Blood Pressure, Glucose Metabolism, and Markers of Inflammation in NAFLD Patients: An Observational Trial - (Mazidi, 2014)
  83. Comparative effects of carbohydrate versus fat restriction on metabolic profiles, biomarkers of inflammation and oxidative stress in overweight patients with Type 2 diabetic and coronary heart disease: A randomized clinical trial. - (Raygan, 2016)
  84. Normal fasting plasma glucose and risk of type 2 diabetes diagnosis - (Nichols, 2008)
  85. Are We All Pre-Diabetic? - (Stokel,2016)
  86. Hepatic NAD+ deficiency as a therapeutic target for non-alcoholic fatty liver disease in aging - (Zhou, 2016)
  87. Effect of exercise intensity on post-exercise oxygen consumption and heart rate recovery - (Mann,2014)
  88. A 45-minute vigorous exercise bout increases metabolic rate for 14 hours - (Knab,2011)
  89. Effects of high-intensity resistance training on untrained older men. II. Muscle fiber characteristics and nuclei-cytoplasmic relationships - (Gerontol, 2000)
  90. Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice - (Newman, 2017)
  91. A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice - (Roberts, 2017)
  92. NK cells link obesity-induced adipose stress to inflammation and insulin resistance - (Wensveen, 2015)
  93. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation - (Wensveen, 2015)
  94. The impact of the Standard American Diet in rats: Effects on behavior, physiology and recovery from inflammatory injury - (Totsch, 2017)
  95. Bioenergetic state regulates innate inflammatory responses through the transcriptional co-repressor CtBP - (Shen, 2017)
  96. The Ketogenic Diet as a Treatment Paradigm for Diverse Neurological Disorders - (Stafstrom, 2012)
  97. Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle - (Fredrick 2016)
  98. Digestion and absorption of NAD by the small intestine of the rat - (Henderson, 1983)
  99. Effects of a wide range of dietary nicotinamide riboside (NR) concentrations on metabolic flexibility and white adipose tissue (WAT) of mice fed a mildly obesogenic diet - (Shi, 2017)
  100. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans  - (Brenner, 2004)
  101. Nampt Expression Decreases Age-Related Senescence in Rat Bone Marrow Mesenchymal Stem Cells by Targeting Sirt1 - (Ma, 2017)
(0) Items
Items 0
Subtotal $0.00
To Top